Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests.

نویسندگان

  • Haofei Yu
  • Alex Guenther
  • Dasa Gu
  • Carsten Warneke
  • Chris Geron
  • Allen Goldstein
  • Martin Graus
  • Thomas Karl
  • Lisa Kaser
  • Pawel Misztal
  • Bin Yuan
چکیده

Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or vegetation other than high monoterpene emitting trees may be an important source of monoterpene emissions in those landscapes and should be identified and included in biogenic emission models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogenic volatile organic compound (VOC) emissions from forests in Finland

We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995–1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which i...

متن کامل

Airborne observations reveal elevational gradient in tropical forest isoprene emissions

Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emissio...

متن کامل

Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.

Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses ...

متن کامل

Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate

[1] Natural emissions of nonmethane volatile organic compounds (NMVOCs) play a crucial role in the oxidation capacity of the lower atmosphere and changes in concentrations of major greenhouse gases (GHGs), particularly methane and tropospheric ozone. In this study, we integrate a global biogenic model within a terrestrial ecosystem model to investigate the vegetation and soil emissions of key i...

متن کامل

A model for European Biogenic Volatile Organic Compound emissions: Software development and first validation

A grid-oriented Biogenic Emission Model (BEM) has been developed to calculate Non-Methane Volatile Organic Compound (NMVOC) emissions from vegetation in high spatial and temporal resolutions. The model allows the emissions calculation for any modeling domain covering Europe on the basis of: 1) the U.S. Geological Survey 1-km resolution land-use database, 2) a land-use specific, monthly isoprene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 595  شماره 

صفحات  -

تاریخ انتشار 2017